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Abstract

This paper develops local signal detection strategies for spectral resolution of frequencies of
nearby tones. The problem of interest is to decide whether a received noise-corrupted and discrete
signal is a single-frequency sinusoid or a double-frequency sinusoid. This paper presents an extension
to M. Shahram and P. Milanfar (On the resolvability of sinusoids with nearby frequencies in the pres-
ence of noise, IEEE Trans. Signal Process., to appear, available at http://www.soe.ucsc.edu/~milanfar)
the case where the noise variance is unknown. A general signal model is considered where the fre-
guencies, amplitudes, phases alwb the level of the noise variance is unknown to the detector. We
derive a fundamental trade-off between SNR and the minimum detectable difference between the
frequencies of two tones, for any desired decision error rate. We also demonstrate that the algorithm,
when implemented in a practical scenario, yields significantly better performance compared to the
standard subspace-based methods like MUSIC. It is also observed that the performance for the case
where the noise variance is unknown, is very close to that when the noise variance is known to the
detector.
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1. Introduction and problem setup

Resolving sinusoidal signals with nearby frequencies has been of a significant interest
in array processing and in particular direction finding, where two incoherent plane waves
are incident upon a linear equi-spaced array of sensors [2]. The previous works done in
this area fit in two categories; some have researched and developed novel methods and al-
gorithms (see Refs. [3,4] for a list of the related literature and Refs. [5—7] for more recent
works), whereas many others have focused on the performance analysis of the developed
algorithms [2,8-16]. Some common approaches in the latter group have been to derive a
sensitivity measure for the algorithms to the noise level [14], or to determine the “thresh-
old” SNR at which a minimum resolvability (in statistical terms) can be obtained [2,15].

In any event, the trade-off between resolvability and SNR has been consistently used as a
performance figure for spectral estimators.

We consider the signal of interest to be

s(x; 81, 82) = a1Sin(27 (fc — 81)x + ¢1) + az2sin(27 (fc + 82)x + ¢2) (1)

with x € [—B/2, B/2], where the frequencies of sinusoidt { 81 and f; + §2) are around

a “center” frequencyfc. This center frequency can be assumed to be known or estimated
beforehand by applying one of the existing spectral estimation methods. Assuming that the
measured signal is corrupted by noise and sampled at ragtg we can write it as

f(k; 81, 82) = s(k; 81, 82) + w(k) 2
=ai Sin<27f(fc - 51)£ + ¢1)
fs
+az Sin<27T(fc + 82)? + ¢2> +w(k), 3)
S

where the integer indek is in the rangek € {(—(N — 1)/2,...,(N —1)/2} andN = Bfs
is the total number of samples. The teuntk) is a zero-mean Gaussian white noise process
with unknown variance .

The spectral representation (i.e., the discrete-time Fourier transform (DTFT)) of the
signal in (3) consists of two overlapping patterns centergd ats1 and f; + d2. According
to the so-called Rayleigh criterion [10], these two peaks in the frequency domain are barely
resolvable if

81+8>=1/B. (4)

Hence for any signal with a frequency separatién+ 2 < 1/B), the main-lobe of the
Fourier transform of the (sum of) two sinusoids is located in the same DTFT bin. In other
words, the two frequency components are, in the Rayleigh senssplvable. This is the
scenario of interest in this paper. In the remainder of this paper, we use the phrase “signals
with short observation interval” to identify signals in which the valuesBo®;, andsz
satisfy the inequality; + 62 < 1/B.

As we are to decide whether the received signal is a single-sinusoid (one peak in the
spectral domain) or double-sinusoid (two peaks in the spectral domain), the problem of
resolution can be posed as the following hypothesis test
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Hq1: 81 >00rd2 >0, ()

where Hg and H1 denote the null hypothesis (one peak is present) and alternative hy-
pothesis (two peaks are present), respectively. Since we consider the casévareté,

are unknown to the detector, (5) represents a composite (but one-sided) hypothesis testing
problem [17]. We treated this problem in the case where the noise var&neas known

in [1], and the contribution of this paper consists of extending the earlier analysis to the
unknown noise variance case.

Almost all the previously developed techniques in this area employ the structure of the
second order statistics of the signal. The key assumption is that of independent uniformly
distributed phases of each sinusoid. Assumingnd¢, to be independent and uniformly
distributed random variables in the rangd@f2r ], the resulting hypothesis test from (5)
using the signal covariances is given by

{Ho: f~N(0,Rg +02l), ©)
Hi: f~N(O,Ry+02l),

whereRg andR; are the autocorrelation matrices of the sign@) in (2),

{ Ho: 61 =0ands, =0,

2
Ro= 1L Refr(forT (o) @)
2 2
Ry = %1 Rer(fe—80rT(fo— 8] + “72 Rer (fe+82rT(fe+82)]. (8)

where R¢ ] denotes the real part am¢) is the vector form of

rk; fo) = eXP(j hfc?)- )

For the most idealistic case where all the parameters in (7) and (8) are known to the detec-
tor, an NP detector for (6) decidés if

Te(H) =fT[(Ri+02) ™ = (Ro+02) i > y, (10)

where subscript “c” denotes the “completely known” case. In practice, however, since only
the time series are available, an estimate of the autocorrelation matrix derived from the sig-
nal samples is used. Furthermore, since finding the maximum likelihood (ML) estimation
of the autocorrelation matrix is a highly complicated task, other suboptimal alternatives
are used. The so-called subspace methods (e.g., MUSIC) for spectral estimation are based
on the eigen-decomposition of the autocorrelation matrix into orthogonal signal and noise
subspaces [2—4,18-20].

Our proposed analysis is based on the model for the measured signal in (2) instead of
relying on the second order statistic (i.e., covariance structure) of the signal. It is useful
to mention that our methodology assumes the phases of sinusoid to be deterministic un-
known variables, whereas the subspace methods treat the phases of sinusoids as uniformly
distributed random variables.

1 superscript “T” in (7) and (8) denotes conjugate transpose.
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Our approach is to quantify a measure of resolution in statistical terms by addressing the
following question: “What is the minimum separation between frequencies of two nearby
tones (maximum attainable resolution) that is detectable at a particular signal-to-noise ratio
(SNR), and for pre-specified probabilities of detection and false al&rarid P;)?”

Addressing the above question will provide a fundamental performance bound which
can be used to understand the effect of SNR and also other parameters on the achievable
resolution in spectral analysis. Furthermore, the final computed performance limitis simply
the result of employing a local detector which can be indeed used and implemented in
practice. For this purpose, we put forward some comparisons between a practical setup
of the proposed algorithm and the MUSIC algorithm. We demonstrate that the proposed
detectors yield noticeably improved performance in resolving the spectra of nearby tones.

In our earlier work [1], we studied the problem in the case where the noise variance
is known to the detector. In this paper, the casaunknown noise variance is considered,
which is perhaps a more practical scenario. The main result of the forgoing analysis, as we
shall see, is that there is little loss in performance when the noise variance is unknown.

In Section 2 we introduce our approach for the most general case, where the ampli-
tudes and phases are unequal and unknown to the detector. In this section we also develop
the corresponding detection strategies and characterize their performance. In Section 3
we present some results and comparisons of the proposed method with existing subspace
methods. Finally, in Section 4, we summarize the results and present some concluding
remarks.

2. Detection theoretic approach

We consider the most general case of the signal model of (3), with unknown amplitudes,
phases, and unknown frequency paramet&rafds,) and also unknown level of noise
variance ¢2). The case of known and equal amplitudes and phases has been studied in
[1] when o2 is known, the result of which has been shown to lead to a uniformly most
powerful test.

When two spectral peaks corresponding to the frequencies of sinugidssg and
fc+ 82) are located in the same bin (below the Rayleigh limit), the range of interest for the
values ofs; andss is small 1, 62 < 1/2B). Hence, it is quite appropriate for the purposes
of our analysis to consider approximating the model of the signal ar@yné,) = (0, 0).

The second-order Taylor expansion of (2) ab@yt §2) = (0, 0), with all other variables
fixed, is
2

s(k; 81,82) ~ Y i pi(k) + Pigi (k). (12)
i=0
where
K\ k
Di (k) = (75) S|n(2ﬂfcﬁ>, (12)

qi (k) = <%> COS(Zﬂfc%), (13)
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and

o = (2;1')’ |:0151 COS<¢1 +i%) +azsh COS(¢1 +i%>i|, (14)
4 (2;)1 {alagsin@l +i %) + azagsin(m +i %)} (15)

We elect to keep terms up to order 2 of the above Taylor expansion. This gives a more
accurate representation of the signal since in some cases the first-order gg(nsaad

g1(k)) would be very small or even would simply vanish. Rewriting (11) in vector form
will result in

2
S%Zaipi+ﬂiqz', (16)
i=0
where
pi = [pi(—~(N = 1)/2),.... pi(N = 1/2)]", (17)
0 = [4i(—=(N = 1)/2),....q:(N = 1/2)]". (18)

Now, the hypotheses in (5) appear in the following form:
Ho: z= aopo + Podo + W,
2
Hi: Z=Z(¥ipi + Big; +Ww, (19)
i=0
wherez denotes the approximate measured signal model. Equation (19) leads to a linear
model for testing the parameter getlefined as follows:

z=H60 +w, (20)
H=[pol|do|p1l01lpz2]0zl, (21)
0 = [oo Bo s 12 21", (22)

whereH and# are anN x 6 matrix, and a 6< 1 vector, respectively. The corresponding
hypotheses are

Ho: A =0, 62> 0,
23
{Hl:A07éO,02>0, (23)
where
00100
000100
A=10 000 1 0| (24)
000O0O

The hypothesis test in (23) is a problem of detecting a deterministic signal with unknown
parameters§( ando2). The generalized likelihood ratio test (GLRT) is a well-known ap-
proach to solving this type of “composite” hypothesis testing problem [21]. The GLRT
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uses the maximum likelihood (ML) estimates of the unknown parameters to form the stan-
dard Neyman—Pearson (NP) likelihood ratio detector. The GLRT for (23) [21] gives the
following test statistic:

_0ATIA(HTH)"1AT] A9

25
0 —HHH)HTz (25)

wherel is the identity matrix andl
9=HHH"z (26)

is the unconstrained maximum likelihood estimatiordofFor any given data set, we
decideH if the statistic exceeds a specified threshold,

T(2)>y. (27)

The choice ofy is motivated by the level of tolerable false alarm (or false-positive) in a
given problem, but is typically kept very low. From (25), the performance of this detector
is characterized by [21]

Pr = QF4,N_6(V)5 (28)

Pa=0Qp o) (29)

k:w%ﬂAWAmnﬂ”AqqA& (30)
o

where Qr, ,_ is the right tail probability for a central F distribution with 4 numerator
degrees of freedom and — 6 denominator degrees of freedom, z@pk Vs is the right

tail probability for a non-central F distribution with 4 numerator degrees of freedom and
N — 6 denominator degrees of freedom, and non-centrality pararhekar a desiredPy

and P;, we can compute the required value for the non-centrality parameter from (28)
and (29). We call this value of the non-centrality paramet@?;, Pq) as a function of
desired probability of detection and false alarm rate. This notation is key in illuminating a
very useful relationship between the SNR and the smallest separatiofs{i,é5)) which

can be detected with high probability, and low false alarm rate. From (30) we can write

1 _
o2 =———9TAT[AHTH)AT] "As. (31)
A(P;, Pq)

Also, by defining the output SNR as
1
SNR= —0THH# (32)
o
and replacing the value af? with the right hand side of (31) the relation between the
parameter sat and the required SNR can be made explicit,
0THTHe

SNR= A(P%, P, .
(P d)OTAT[A(HTH)—lAT]—lAO

(33)

2 Note that(HTH)~1HT is the pseudo inverse bf.
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It is instructive to simplify (33) by approximating the elements of the ma#DH. These
approximations yield (see Appendix A for details)

- N —N N3 7
- 0 0 —u —— 0
2 4 2412
N -N N3
0 . 0 0
2 a4t 242
—N N3 —N3
0 —u 3 0 0 —u
HTH ~ 4 24f¢ 16
N 0 0 No oo o |
4 " 2472 16
N3 0 0 _N3 N5 0
N N
2412 16 16074
0 N3 _N3 0 0 N5
i 2472 16 160/

whereu = cog 2”fCN)/sm( 2”fC) To gain further insight, we consider a special case by
assumingi181 ~ a282, which’ results from a proper choice of the center frequefacisee
Ref. [1]), and simultaneously considering the case where the valye isfclose to that

of ¢,. After some algebra, replacing/ fs by B and neglecting non-dominant terms, for
smallsy ands; (i.e., 81, 62 <« 1/B) (33) will reduce to:

A5 5(Pr, Pa)  (a1+ap)

SNR~ .
74 BY (4162 + ax82)?

(34)

The required SNR is minimized whéa = §2 =6 (i.e.,a1 = a2 = 1); and in this case we
have

45 A (Ps, Pg)

SNRr 2074
74 (BS)?

(35)

An important question is to consider how different this obtained performance is from that
of the ideal detector, to which all the parameters (amplitudes, phases, frequencies, and
noise variance) are known. We first note that in this case the hypothesis test in (19) will
be a standard Gauss—Gauss detection problem. Also, we can further simplify the problem
by seeing that the termagpo + Bodo is a common known term under both hypotheses and
can be removed. As a result, the following relationship can be verified for the completely
known case:

0"THTHe
0TATAHTHATAS'

where the subscript “id” denotes the ideal case at&, Pqy) is the required deflection
coefficient [21] computed as

SNRq4 = (P, Pq) (36)

n=(0"1(pP) — 0 L(Py), (37)
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where 0~1(.) is the inverse of the right-tail probability function for a standard Gaussian
random variable (zero mean and unit variance). Comparing the expression in (33) to that
of (37),

SNR  A(Pi, P))  6TATAHTHATA#
SNRq ~ n(Pr, Pg) 0TAT[A(HTH)-1AT]-1A0
we notice thatn(P;, Py) < A(Ps, Pq) provided Py > P;. Also, It can be proved that

AHTHAT — [A(HTH)"1AT]71 is a positive definite matrix. As a result, as expected,
SNR> SNRq always.

(38)

3. Numerical results and comparisons

We first compare the performance of the proposed detector for the unknéwase
with those of the detector for the knowr? case [1] and the ideal detector (36). Fig-
ure 1 presents the performance figures of these detectors for the casenywhesg and
81 =82 = 8 (curves of 3B versus required SNR). We observe that knowledge of the noise
variance makes little difference to the performance (around 1 dB in required SNR). It is
worth mentioning that the estimate of the noise variance used in (25) is known to be unbi-

Pp=0.99 Pg,=1072

1 — GLRT for unknown ¢?
ook 11 = = GLRT for known 6
! = |deal case

0.8

0.7

0.6

0.3

0.2

10 20 30 4K0 5I0 6IO 7‘0 80 90 160
Output (averaged) SNR(dB)

Fig. 1. 2B vs required SNR for known and unknown noise variamages ap andd; = =34.
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ased [21]. Comparing the ideal (unrealizable) detector, the GLR detector in (25) requires
3-5 dB more SNR to achieve the same resolvability.

As for the comparison to existing methods, we first note that for subspace detectors,
the phase is typically assumed to be a uniformly distributed random varialple 2r].
However the “required SNR” computed in Section 2 is in general a function of the phases of
the sinusoids. Hence in order to compare the obtained results to that of subspace methods,
we carry out the following averaging for the required SNR over the possible range of
and¢y:

1 21 27

SNRavg= y" / / SNR dp1 depz, (39)
00

where subscript “avg” denotes the averaged value and the integrand (SNR) is the right-hand

side of (33).

Next, we simulated the behavior of the MUSIC algorithm for resolving sinusoids with
nearby frequencies. In simulation of MUSIC, the signal is declared to be resolvable if the
output of MUSIC produces two distinct peaks within an interval around the true frequen-
cies (f; = 8). The simulations for MUSIC are carried out for cases in which either a single

Pp=0.99 Pg,=10"2

\ \

| . Y= Proposed Detector with known f_
o9k ‘| '\ . | = = Proposed detector with estimated fc
. \
p 1=+ MUSIC
0.8 A
v
\
07 A
\1
06 \,
\ ‘.\
o (
& 0.5 \ i
Al \ .
A" \.\
04 \‘ ““
\ ‘N
L \, '
0.3 R . \ -,
napsh
0.2 84 snapshots 1 snapshot
01
D 1 1 1 1 1 — ]
10 20 30 40 60 80 90 100

50 70
OQutput (averaged) SNR(dB)

Fig. 2. 2 B vs required output SNR for the MUSIC algorithm and the proposed detector, unknown noise variance,
a1 =ap anddy =8 =34.
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snapshot, or multiple snapshots, are available. Naturally, we consider the output SNR in
the latter case as the sum of SNR'’s of each snapshot.

We develop two different comparison procedures. First, we compare the performance
of MUSIC against the detector in (25), where we assume that the center freqfieraty
which we perform the hypothesis test, is known a priori. Since this might be seen as an
unfair comparison, we have put forward an alternative (perhaps more practical) scenario,
too. In this scenario, we first seek assistance from MUSIC to estimate the center frequency
(fc) and then apply the proposed detector in (25) centered at the peak estimated by MUSIC.

The results of these experiments are shown in Fig. 2. First, we observe that the pro-
posed detector significantly outperforms MUSIC in both cases (using known or estimated
center frequency). More interestingly, we see that the result of the proposed detector with
estimated center frequency (provided by MUSIC) is very close to the performance of the
same detector with known center frequency. This implies that the MUSIC algorithm does
a very promising job in locating the center frequency (i.e., the candidate location where we
can perform a refinement step using our proposed approach). Intuitively, the reason for this
behavior is that for the case where a high probability of resolution (0.99) is considered, a
fairly high value of SNR should be provided. This value of SNR will effectively guarantee
a condition under which the MUSIC algorithm will produce the peak in its spectrum within
the range of f; — 8, fc + 8]. This observation is essentially in agreement with what has
been observed in the past about the stability of MUSIC for single-sinusoid signals.

4, Conclusion

The problem of interest in this paper has been to establish a statistical analysis of attain-
able spectral resolution and to propose its associated detection algorithm. We formulate the
problem as a hypothesis test, the aim of which is to distinguish whether the received signal
contains a single-tone or double-tone. We have considered the most general case where the
amplitudes, frequencies and phases of sinusoids and also the value of noise variance is un-
known to the detector. This paper is different and more general than [1] in that it assumes
o2 is unknown.

By utilizing a quadratic approximation, we in fact carried out the analysis in the con-
text of locally optimal detectors, and developed corresponding detection strategies. The
performance figure of resolution has been quantified by the following practical question:
“What is the minimum detectable frequency difference between two sinusoids at a given
signal-to-noise ratio?”

We clearly observed that noise variance being unknown has little effect on the detection
performance. This is a useful observation, since in practice the variance is often unknown
to the receiver.

Also, the proposed locally optimal detectors yield significantly improved detection
of very nearby frequencies, as compared to the existing subspace methods. In terms of
implementing the suggested detection algorithm, we merely need to estimate the center
frequency. Fortunately, as we confirmed by some experiments, this task can be very effec-
tively performed by using one of the myriad of existing methods for spectral estimation
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and then running the proposed detector at the estimated peak. The performance of such a
detector is nearly identical to that of the detector with a known center frequency.

Appendix A. Computing the energy terms

In this appendix, we explain the general process for the approximate computation of the
energy terms. We will utilize the following identities for the calculation:

L+1

L 1—x
2= (1)
p L+1
o™ X
§ kP _Z o <ﬁ> (A.2)

Xk:kl’“sin(xk) cos(xk) = E% Xk:kp sir?(xk). (A-3)

Instead of showing all the calculations, for the sake of brevity we discuss, as an example,
the calculation of the termJho:

(N-1)/2
2
htho=4 Y sin2< ”f"k)
k=—(N—-1)/2 fs
(N-1)/2
2
= > —[exp(j j;fck> —exp( ffc )}
k=—(N-1)/2 s S
(N-1)/2
4
= > 2- exp(janCk) — exp( ffc )
k=—(N—-1)/2 s S
. 21—exp(j%(N+1)) 21—exp(—j%(N+1))
1- exp(] 4”f° 1—exp(— j4nf°
Cvas 2 - cos(“”fC) +cog ZL (N — 1) — coa ZL (N + 1)
s 1 cog k)
=2N 2sm(MN) (A.4)
B sin( ffC) ' '
—————
c
Since siftx) > 1— |2 2y —1/for0< x <, and Zfe g, by upper and lower bounding
the numerator and the denominator ©f, respectlvely, we have
27ch
sm( N) 2 2
ICl= ‘ < . A5
S|n(2”f°) sin(22e) 1|2 — 1 (A5)
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Thus for the range of < 21/ fs < 1 — € (representing the range ¢§ from just above the
Nyquist rate (2¢) to 1/¢ times the Nyquist rate), we will hay€| < 1/¢ and therefore for
€ <5/N

hoho ~ 2N. (A.6)

A similar approach can be followed to compute other energy terms.
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